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ABSTRACT 

The Office of the Chief of Naval Operations, Capability Analysis and Assessment 

Division (OPNAV N81), along with other DOD organizations, utilizes the Synthetic 

Theater Operations Research Model (STORM) as its primary campaign analysis tool. 

STORM aids senior-level policymakers in evaluating military strategy and capabilities, 

force structure, and operational effectiveness. This is a proof-of-concept thesis that 

determines the feasibility of implementing a simple design of experiments within the 

complicated framework of STORM. Such a capability will enable quicker and more 

robust estimates of proposed force structure trade-offs. After utilizing various methods 

and statistical techniques, this thesis concludes that it is possible to implement small 

designs within STORM that could offer useful insights to OPNAV N81 analysts. 

However, the steps needed to successfully complete a design are far from automated and 

fairly complex. Currently, they require a great deal of time to manually apply. As a pilot 

study, these results pave the way for future researchers to apply our results to a real-

world, classified scenario.  
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EXECUTIVE SUMMARY 

The Synthetic Theater Operations Research Model (STORM) is a state-of-the-art, 

computer simulation that is specifically designed to offer Department of Defense (DOD) 

organizations key strategic insights into military force structure, capabilities, and overall 

operational effectiveness.  In 2010, OPNAV N81, the U.S. Navy’s Assessment Division, 

adopted STORM as its primary campaign analysis tool due to its stochastic nature, which 

provides analysts the ability to model the inherent variability of combat through random 

number generation.  N81 utilizes STORM in order to perform quick turn-around analysis 

on classified scenarios that are developed years in advance.  However, STORM is 

hindered when supporting this type of analysis due to extremely long run times and 

extensive output.  Moreover, it is difficult for analysts to answer questions that pertain to 

how modifications in force-structure will affect the overall scenario outcome without 

making major changes to input data files, which consumes a great deal of time and 

money.  In today’s budget-stricken military, N81 must look to broaden the scope of its 

analysis while limiting associated costs and manpower-intensive post-processing data 

analysis.  This proof-of-concept thesis explores the feasibility of implementing a design 

of experiments (DOE) within the complicated framework of STORM. 

Given that STORM is extremely complex and its results can be difficult to 

interpret, it is often the case that analysts’ level of knowledge extends only to the 

collection and post-processing analysis of output data files.  Therefore, it is imperative 

that a basic working knowledge of the model be obtained prior to attempting a STORM 

analysis utilizing a design of experiments.  For this reason, this thesis provides a 

condensed version of three developer-written manuals and information papers that 

highlight STORM’s development, basic structure, characteristics, and capabilities.  

Armed with this knowledge, analysts will possess the tools necessary in order to follow 

the four-step methodology outlined in this thesis, which is specifically developed for 

ensuring a successful DOE implementation that is as simple as possible.   

The first step in the process is critical—identifying potential correlation 

relationships among controllable input factors by analyzing output data extracted from a 
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newly developed software program called STORMMiner.  For this research, Pearson’s 

correlation coefficient, Spearman’s rho, and Kendall’s tau equations reveal a strong 

positive correlation between the average number of blue force naval multi-role fighters 

(BFNMF) lost and blue carriers killed.  Given the significance of this relationship, a 2k 

factorial design is built that includes three intercept speed profiles specific to the 

BFNMF.  In the design, intercept speeds are modified by increasing and decreasing their 

values by 10%.  Given the unique input file format used by STORM, custom files that 

include this design are generated and incorporated into eight separate sets (called design 

points) of runs for the PUNIC 21 scenario.  Each design point run corresponds to a 

unique combination of intercept speed profiles, which produces results in the form of 

exclusive sets of output data that are analyzed in order to determine what effect changing 

the BFNMF intercept speeds have on the outcomes of the scenario. 

The detailed analysis examines each design point as it pertains to four output 

metrics, which are treated as separate responses: the average number of blue force carrier 

and BFNMF losses, the average time it takes blue forces to achieve air supremacy, and 

the average number of red force surface to air missile (SAM) sites that are destroyed.  

Through the utilization of summary statistics and graphical examination, it initially seems 

that the variation exhibited in all responses is unique from one design point to the next. 

This implies changes in BFNMF intercept speeds have a noticeable effect on the outcome 

of the PUNIC 21 scenario.  However, analysis of variance, Tukey’s honest significant 

difference, and Pearson’s chi-squared statistical tests reveal that only one metric—the 

elapsed time until blue forces achieve air supremacy—contains design points that are 

statistically different from one another.  Further investigation of this metric reveals that in 

design point eight, which includes higher BFNMF intercept speeds, blue forces only took 

13.71 days on average to achieve air supremacy—while some other design points failed 

to achieve air supremacy within 20 days nearly 40 percent of the time.  It is interesting to 

note that design points seven and eight resulted in blue forces not only achieving air 

supremacy 100% of the time (across 25 replications), but did so earlier in the scenario.  

The other design points achieved air supremacy an average of 18.5 out of 25 or only 74% 

of the time.  Further analysis was performed, in the form of linear regression and partition 
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tree models, in order to identify whether any of the intercept speed factors are significant 

in terms of predicting a response and to detect interactions that may have been 

contributing to the response output.  As a whole, we find that the variability in outcomes 

inherent in STORM dominates the effects of changing BFNMF intercepts speeds by plus 

and minus 10%.  This is not surprising, as STORM contains many thousands of input 

factors that could conceivably affect output measures.   

The primary purpose of this pilot thesis is not to determine which intercept speed 

factors of the BFNMF are most significant in determining the average number of blue 

carrier losses, the average time to blue air supremacy, or any other metric.  The goal is 

ultimately to determine whether or not it is feasible to successfully implement DOE 

within STORM and, if it is, to develop a sound methodology for doing so.  We conclude 

that despite the lack of statistical differences among the design points for three out of the 

four metrics, a DOE can be implemented and may be extremely useful to N81 analysts if 

the methodology used in this thesis can be automated.  However, now that we know 

design is a viable option, additional methods into building software tools to automate this 

process must be explored, which will allow for larger and more effective designs to be 

implemented within STORM. 
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I. INTRODUCTION 

According to current strategic guidance, the Department of Defense (DOD) must 

reduce future defense expenditures to $487 billion over the next decade due to caps 

instituted by the Budget Control Act (BCA) of 2011. A sequestration mechanism was 

also instituted by the BCA requiring $50 billion in cuts annually (Hagel, 2014). In 2016, 

unless Congress agrees on a budget, the DOD may be facing additional sequestration 

cuts. The austerity of such budgetary restrictions will force current and future decisions 

on matters of national defense to be heavily scrutinized for validity. The Office of the 

Chief of Naval Operations, Capability Analysis and Assessment Division (OPNAV N81), 

provides senior DOD officials this validity through crosscutting analysis of U.S. Naval 

warfare and force-level capabilities. Personnel at N81 utilize many techniques and 

models to perform their assessments, but the primary modeling environment used for 

campaign analysis is the Synthetic Theater Operations Research Model (STORM).  

STORM is a state-of-the-art, multi-sided, closed-form, stochastic computer 

simulation designed to provide insight into military strategy, capabilities, force structure, 

and operational effectiveness in a joint warfighting context (Group W, 2012c). Originally 

developed for HQ/U.S. Air Force Studies and Analysis and Assessments and Lessons 

Learned (HQ/USAF A9), STORM offers unique campaign analysis capabilities and was 

adopted as N81’s primary assessment tool once a maritime component was incorporated 

in 2006 (Sweeney, Hamman, & Biemer, 2011).  

The current version, STORM 2.3, allows analysts to input a multitude of factors 

(often referred to as variables) in a single simulated campaign covering the air, space, 

land, and maritime domains (Group W, 2012a). Consequently, a single instantiation 

results in gigabytes of output data that analysts must examine. To adequately characterize 

the breadth of objects being simulated in a campaign, many thousands of input variables 

must be specified by the user, as well as entity capabilities, behaviors, and interactions 

with each other and the environment. Given STORM’s stochastic nature, typically 25 to 

50 replications are generated for each configuration, which has proven to generate stable 

results with sufficiently narrow 95% confidence intervals, thereby allowing analysts to 
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better understand key output measures. As beneficial as having a stochastic model may 

seem, it exponentially increases the workload of N81 personnel and their turnaround 

times. The enormous volume of output data impedes fast and efficient use of STORM 

and requires more than 24 hours of manpower-intensive post-processing before 

recommendations can be forwarded to senior-level decision makers.  

In an effort to improve N81’s post-processing capabilities, the Naval Postgraduate 

School’s SEED Center (Simulation, Experiments, and Efficient Design, see 

http://harvest.nps.edu) initiated a project to increase the overall speed and efficiency of 

STORM analysis by developing a post-processing tool that extracts scenario relevant 

metrics. N81 often receives tasking to estimate how perturbations in force structure, 

platform types, and capabilities might impact the overall effects on a specific campaign. 

Given that scenario development usually takes a year or more and output responses are 

based on large input data files, modifying individual factors for the purpose of sensitivity 

analysis is extremely difficult. Therefore, harnessing the power of experimental design 

offers a potential solution. 

Experimental designs developed specifically for computer models have made it 

possible for experimenters to explore many more input variables than was feasible only a 

few years ago (Hernandez, Lucas, & Carlyle, 2012). Additionally, the designs indicate 

how to efficiently vary the settings of factors to see whether and how they affect outputs. 

This provides insights that cannot be gleaned from trial-and-error approaches or by 

sampling factors one at a time (Sanchez, 2007). Providing N81 with the ability to 

automate running STORM experiments according to a specified experimental design will 

save valuable time and allow the Navy to operate under a strict budgetary constraint by 

quickly identifying the dominant factors within a specified campaign. 

A. LITERATURE REVIEW 

Documentation relevant to STORM 2.3 software is limited to developer-written 

manuals and serves as reference documents to all users. The User’s Manual is written for 

the end user and provides basic operating instructions, input and output tools, and 

terminology associated with the graphical user interface (GUI) within which users 
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interact with the system (Group W, 2012c). The current version of STORM offers many 

enhancements to its predecessors, which were sponsored by the U.S. Navy and Marine 

Corps in an effort to integrate campaign-level expeditionary warfare into STORM. These 

upgrades are explained in the “What’s New in Version 2.3” document provided as an 

add-on to the User’s Manual (Group W, 2012d). The Analyst’s Manual is intended to 

promote a level of understanding and skill with STORM on the part of the campaign 

analyst. It is designed for individuals, with a range of experience levels, who are 

concerned with employing the simulation as a campaign-level tool to produce credible 

results for the decision maker (Group W, 2012a). The Programmer’s Manual is more 

technical in nature, and provides guidelines for STORM development. It is intended for 

the programmers and designers of STORM to use as a guide to develop source code at 

both the Group W Inc. facility and remotely (Group W, 2012b). Additionally, appendices 

contain information useful to those who utilize all of the manuals associated with 

STORM software (Group W, 2012a). These documents serve as the primary resources 

that provide the background information on STORM for this thesis.  

Experimental design has a rich history, with many theoretical developments and 

practical applications in a variety of fields (Kleijnen, Sanchez, Lucas, & Cioppa, 2005). 

The implementation of a design of experiments (DOE) within the framework of STORM 

is primarily based on the work of Professors Thomas Lucas and Susan Sanchez. Their 

work has influenced more than a dozen DOD modeling environments and countless 

thesis projects related to the subject. Their research (see http://harvest.nps.edu) is used 

extensively in this proof-of-concept thesis. Additionally, works by Averill M. Law, who 

was previously a Professor of Decision Sciences at the University of Arizona, and is now 

President of Averill M. Law and Associates, are utilized to help set up the initial design 

in STORM (Law, 2007).  

B. RESEARCH QUESTIONS AND GOALS 

 The primary goal of this research is to determine whether the implementation of a 

modern-day design of experiments is feasible within the complicated framework of 

STORM. This is a proof-of-concept thesis applies a recently developed post-processing 
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tool, known as STORMMiner, to the unclassified, pre-installed PUNIC 21 scenario. 

STORMMiner allows for the manipulation of specific and carefully chosen factors. As a 

result, this research is guided by the following questions: 

1. Does STORM’s complexity allow for the implementation of a design of 
experiments? If so, what is the most efficient execution of such a design?  

2. Should all input variables be considered as significant factors with regards to 
model output? If not, which ones should be and how can they be determined?  

3. Will a single proof-of-concept demonstration be sufficient in determining the 
analytical potential of the new capabilities?  

 

C. METHODOLOGY 

This thesis explains specific details regarding STORM, including some of its 

input variables and responses, to provide the reader with a basic understanding of this 

complex campaign analysis tool. Output data analysis is performed in order to initially 

determine significant factors that may be appropriate to use in a small design of 

experiments. After a designed experiment is successfully run, analysis is performed to 

demonstrate the benefits of using experimental design. Following the implementation of 

the newly developed technique, the results will be provided to N81, extending its current 

analysis capabilities by enabling statistical insights to be gleaned through the designed 

modification and experimentation of input variables.  

D. BENEFITS OF RESEARCH 

This research will assist N81 analysts in capturing the full potential of STORM 

and provide insights into how modifying model inputs may affect model outputs. This 

will be critical in verifying and validating (V&V) new scenarios, helping N81 quickly 

gain confidence in their reliability. Given the substantial time it takes for the development 

of a single scenario, the implementation of experimental design offers the potential to 

provide answers to difficult questions in a fraction of the time now required.  
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In order to provide substantial benefits to N81, the experimental design process 

developed in this thesis must be automated. This capability has not yet been achieved. In 

that regard, this pilot study creates a foundation for follow-on research pertaining to 

STORM. The design and analysis performed in this thesis is a first step in a long journey 

that will ultimately enhance the utility of STORM to the Navy.  
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II. STORM OVERVIEW 

STORM is a multi-sided, stochastic, simulation of air, space, ground, and 

maritime planning and execution. Its framework is extremely complex and often difficult 

to interpret even for an experienced user. From the analysts’ perspective, STORM is a 

means to an end. For N81 analysts specifically, this means their focus may be on output 

data and not necessarily on how the data flows through STORM. Developers and DOD 

civilian contractors are the STORM experts and work closely with N81 if technical 

questions arise. Therefore, the main purpose of this chapter is to provide the reader and 

follow-on researcher with a broad overview of STORM, to include its development, basic 

structure, characteristics, and capabilities from an analyst’s perspective.  

A. MODELING AND SIMULATION 

The Defense Modeling and Simulation Office (DMSO) was established in 1991 

following a policy study set forth by the Department of Defense (DOD) on Defense 

Modeling and Simulation (M&S). This was the precursor to the DOD directive, signed in 

1994, which requires each of the military services to adopt their own verification, 

validation, and accreditation (VV&A) process for M&S (Nunn & Heimerman, 2003).  

B. ADOPTION OF STORM MODEL 

Following an in-depth review by the Center for Naval Analysis (CNA), the 

Integrated Theater Engagement Model (ITEM) was adopted by N81 as the U.S. Navy’s 

primary assessment tool in 2003. ITEM provided integrated air, land, and naval warfare 

engagement models permitting a realistic representation of capabilities utilizing a 

deterministic method to represent uncertainty in outcomes (Sweeney et al., 2011). At that 

time, a deterministic approach was preferred over a stochastic one, which requires 

multiple simulation runs to produce a distribution of outcomes for a single set of inputs 

(Sweeney et al., 2011). Given significant advancements in technology and computing 

power over the past few decades, the higher number of required model runs has become 

less of an issue, making stochastically driven models more appealing due to their ability 
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to provide a solution space (i.e., distribution of potential outcomes) rather than a point 

estimate based on assumed probabilities. This was the principal reason why N81 looked 

to adopt STORM as its new assessment tool.  

C. IMPLEMENTATION OF MARITIME COMPONENT IN STORM 

STORM was first developed and used by the U.S. Air Force and is managed by 

the U.S. Air Force Air Staff’s Studies and Analysis Directorate (A9). It replaced the 

theater-level tactical air warfare model known as THUNDER as the Air Force’s primary 

campaign analysis tool in 2004. In 2006, N81 partnered with A9, under the project name 

STORM+, in an effort to determine the feasibility of adding a maritime component to a 

predominately air-warfare model (Sweeney et al., 2011). Verification and testing efforts 

were broken into three distinct phases, each building on the previous phase, with the 

ultimate goal being the successful implementation of a maritime operational command 

and control (C2) component similar to the ground and air C2 components that previously 

existed in the Air Force’s STORM model. In July 2010, STORM+ efforts resulted in 

STORM Version 2.0, which was utilized by N81 as their primary campaign analysis tool 

until it was superseded by version 2.3 in early 2014.  

D. BENEFITS OF STOCHASTIC SIMULATION 

Although computing technology has made rapid advancements in the past two 

decades, it is impossible to model every outcome military combat could generate, 

especially considering war itself is inherently chaotic, intrinsically unpredictable, and 

characterized by a great deal of uncertainty (Vinyard and Lucas, 2002). Efforts to close 

the gap between simulation and reality can best be made by the implementation of a 

stochastic model, which introduces one or more random variables as inputs to represent 

uncertainty. This produces an outcome, result or value that depends on chance (Lucas, 

2000).  Additionally, results are provided as a distribution of outcomes rather than a 

simple point estimate, which is particularly beneficial to a military analyst because it 

allows them to identify the entire range of possibilities, or variation, within a specified 

campaign. Only with a thorough investigation of all associated uncertainty will the 
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decision maker be allowed to interpret the results in an informed way and make risk 

assessments (Committee on National Statistics and Committee on Applied and 

Theoretical Statistics, 1994).  

E. STORM AS A STOCHASTIC MODEL  

STORM is a stochastic simulation, therefore requiring multiple runs in order to 

achieve a desired level of confidence in outputs. For highly aggregated data, relatively 

few replications may be needed.  However, for rare events, such as the loss of a carrier, a 

significantly higher number of runs may be required (Group W, 2012a). As a baseline, 

N81 analysts typically use 30 runs on scenarios−regardless of complexity. Moreover, as a 

stochastic model, STORM input data is generated from twelve available random number 

distributions (e.g., binomial, gamma, uniform, triangular, Weibull), that are pre-set or 

user-defined. For example, Figure 1 is an input file that defines damage functions for 

specific maritime surface ships by weapon class.  
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Figure 1.  An example input data file for maritime surface ship damage 
functions categorized by weapon type 
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F. STORM−A CAMPAIGN ANALYSIS TOOL 

The shaping of military strategy involves three key elements: development of an 

overall objective or end-state; a ways (courses of action); and a means (available 

resources). STORM is a campaign analysis tool that aids the decision maker in 

developing and evaluating the above-mentioned characteristics for an improved 

understanding of policy, acquisition, and operational issues that may arise (Group W, 

2012c). Figure 2 illustrates the way STORM captures the overall impact, known as the 

campaign analysis thread. It is this traceable process—which links systems represented in 

STORM and their unique capabilities—that provides an outcome of adjudications over a 

simulated period of time. The four pillars that make up the campaign analysis thread 

serve as guidelines for a balanced simulation (Group W, 2012c). Systems are the real-

world objects (air, land and sea platforms) and their supporting subsystems, which 

accurately represent the multiple players normally associated with a military campaign. 

Capabilities are the characteristics of each specific system. For example, destroyers may 

carry torpedoes with heavier payloads than a hunter submarine or offer different 

intelligence, surveillance, and reconnaissance (ISR) capabilities. Planning refers to the 

courses of action (COA) that are carefully planned out in advance by individuals relevant 

to a specific campaign (such as N81). For example, a COA may include sending a carrier 

strike group (CSG) in the western Mediterranean for sea denial operations. These COA’s 

are implemented through a set of executable data files and control how assets or groups 

of assets move during a scenario similar to pieces on a chessboard. Analysts, following 

execution, will be able to determine the overall impact of their generated scenario, which 

is the beauty of STORM.  
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Figure 2.  Diverse activities associated with a STORM campaign  
(from Group W, 2012a) 

G. STORM–A DATA-DRIVEN DESIGN 

STORM exhibits a data-driven design characteristic, which purposefully avoids 

the hard wiring of data (Group W, 2012b). N81 is often tasked with running unique 

classified scenarios that are either relevant to present-day military operations or future 

campaigns that may fall within the U.S. Navy’s area of interest (AOI). Either way, hard 

wiring data contributes to making modifications complex, extremely costly, and hinders 

the ability to build scenarios in an appropriate amount of time. Currently, N81 analysts 

and STORM developers can build a complete real-world scenario in about a year or so, 

depending on the level of complexity. Without STORM’s unique capability, the time 

required would dramatically increase.  
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H. REPRESENTATIONS IN STORM 

 STORM models real-world combat operations through the use of input data files 

that are organized into five classes or representations: Command and Control (C2), 

Assets, Intelligence Manager, Interaction Manager, and Environment. The classes 

interact nearly simultaneously during a simulation to form STORM’s conceptual model. 

Each representation contains sub-classes, which continuously send and receive state-

condition reports to the C2, intelligence, and interaction managers. Upon execution of a 

scenario, the C2 manager will issue initial orders and requirements to the assets and 

intelligence manager, respectively. As the campaign progresses, assets will send status 

reports on their current condition, whether fully mission capable, degraded, or out of 

action (OOA). Those updates are then interpreted and new orders issued by the C2 

manager. This cycle continues until the simulation is terminated by a pre-set run time or 

the opposing force is unable to continue its mission (as determined by a user specified 

stopping rule). Shown in Table 1 are the five representations and associated sub-classes, 

including the most relevant classes for this thesis, assets, and environment.  

 

 
Table 1.   Table of available representations in STORM 

1. Storm Assets 

Real-world physical entities are represented in STORM by assets that move, 

attack, conduct surveillance, consume resources, and execute orders similar to the way 

military operations are conducted at the theater level (Group W, 2012c). As in real 

combat, assets can experience a reduction in capabilities or be taken out of the fight 
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altogether. There are three categories of assets: Surface, air, and orbital. Surface assets 

are a representation of naval surface and subsurface platforms (e.g., carriers, cruisers, 

destroyers, amphibious crafts, submarines), shore installations (e.g., naval and air bases), 

and ground units (e.g., armored divisions). Air assets represent individual airframes (e.g., 

strike fighters and reconnaissance aircraft) or squadrons. Surface and air platforms have 

unique capabilities (e.g., munitions, surface search radar, sonar), which themselves 

contain distinctive characteristics (e.g., payload, max/min ranges, max/min speeds). 

Satellites and space-based platforms are representations of orbital assets relating mostly 

to how effectively surface and air assets communicate (Group W, 2012c).  

2. Storm Environment 

Environmental conditions are key elements that can impose significant limitations 

on a campaign. Therefore, the environment class provides unique capabilities to the user 

that allow them to enforce specific conditions on the AOI, such as terrain type, geospatial 

location, cloud density, darkness, and time (day/night).  

I. STORM–THE USER 

STORM offers many tools the end user can utilize for analysis. These tools are 

broken into three functional areas: Input, execution, and output. Input refers to all input 

data files, segregated from the model itself, that pertain to a user-generated scenario, 

referred to as a study. Each study houses relevant data files that are fed into STORM at 

the execution of a simulated run and can be easily accessed through STORM’s GUI 

under the study manager tab (see Figure 3).  
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Figure 3.  STORM’s GUI (from Group W, 2012c) 

 Additionally, the execution and output functional areas can be easily accessed 

from this interface to complete each run and perform post-run analysis, respectively. The 

execution functional area offers many options to customize a particular run configuration, 

such as the number of runs, specification of a random number stream (1–10), or whether 

to compress the output file. The output functional area is broken up into three post-run 

analysis tools: Map tool; Graph tool; and Report tool.  

1. Map Tool 

The map tool is an interactive application that provides a geographical 

representation of a previously completed simulation run (see Figure 4). STORM users 

can specify which assets to view through field filters, fast-forward to a certain point, or 

zoom in to analyze a particular AOI. Unfortunately, STORM’s map tool cannot be 

utilized in real-time. Each run must first be completed in order for this option to be used.  
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Figure 4.  STORM’s map tool interface (from Group W, 2012c) 

2. Graph Tool 

The graph tool is an application that allows the user to view model results in 

either graph or data table format (Group W, 2012c). These data tables are transferable 

into external statistical applications (e.g., R, JMP) or spreadsheet programs (e.g., Excel) 

that give the user even more options with which to analyze the output. Although 

extremely beneficial, graphs and data table options are limited in STORM to only certain 

output metrics. For metrics not included, users must utilize the report tool application.  
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3. Report Tool 

The report tool application provides output data in tabular form as either HTML 

or comma separated file (.csv) files. Unlike the graph tool, it offers specifics on every 

aspect of the simulation. For example, an analyst can see which maritime assets were 

killed, who killed them, and with what type of weapon. Although this is useful 

information, a single run can generates hundreds of files. This makes it particularly 

difficult for even an experienced STORM user to identify useful information.  

J. STORM–PUNIC 21 

The current version of STORM includes two unclassified test scenarios; WONA 

and PUNIC 21. Both were specifically designed to provide users the ability to experience 

many aspects of STORM’s functionality. Due to its maritime aspects, relatively small 

input data set, and short run time (20 simulated days), PUNIC 21 was selected as the test 

scenario for this thesis. The purpose of this section is to provide a brief overview so 

readers may familiarize themselves with PUNIC 21.  

1. Current Situation and Battle Phases 

PUNIC 21 is predominately a naval battle between blue forces of the allied 

nations of Anglo Republic and Carthage (ARC), and red forces of the Swiss Empire (SE). 

Tensions between these nations are on the rise and the area has become increasingly 

unstable due to the Swiss Empire’s determination to seize control of the entire Iberian 

Peninsula. Figure 5 is a geographic snapshot of the AOI and occupied territories for 

PUNIC 21. The scenario is broken up into four major phases: Battle of the Atlantic; 

Battle of the Mediterranean; Fight for Spain; and Fight for Italy. Each phase incorporates 

surface, sub-surface, air, and ground engagements taking place over a period of twenty 

days, which was arbitrarily chosen as the battle duration.  
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Figure 5.  AOI for STORM’s PUNIC 21 scenario 

2. Order of Battle for Blue and Red Forces 

Both ARC and SE possess a particular level of military force strength. However, 

both are relatively at parity and contain maritime, air, land, and logistical elements. The 

maritime order of battle (OOB) for blue and red forces is shown below in Table 2. Darker 

colored rows indicate totals for combat vessels, combat logistic forces (CLF), and mobile 

riverine forces (MRF).  

The air OOB shown in Table 3 is similar to the maritime OOB, that is, darker 

rows indicate totals for combat aircraft, non-combat aircraft, and missiles (for red only). 

For PUNIC 21, red forces possess 180 surface-to-surface missiles, 40 short-range 

ballistic missiles, and 24 intermediate-range ballistic missiles. Although this is a 

capability the blue forces lack, it does not provide a significant advantage to the SE.  
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Blue Navy  Quantity  Red Navy  Quantity 
CV (Carrier)  3  CV  1 

LHD (Amphibious Assualt)  3  LHD  0 

CG (Guided Missile Cruiser)  8  CG  12 

DDG (Guided Missile Destroyer)  24  DDG  27 

MIW (Counter‐Mine)  2  MCM  0 

SSN (Attack Submarine)  10  SSN  11 

SSGN (Guided Missile 
Submarine)  1  SSGN  0 

Combat Vessels  51  Combat Vessels  50 

CLF (Combat Logistic Force)  11  CLF  2 

CLF Oiler  6  CLF Oiler    

MRF‐N (Mobile Riverine Forces)  120  MRF‐N  100 

MRF‐M  40  Total MRF  100 

MRF‐EW  15  AEW  3 

MRF‐Tanker  15  MPA  8 

Total MRF  190  Vertical Assault  0 

AEW (Airborne Early Warning)  9 

MPA (Maritime Patrol)  12 

Vertical Assault  40 
 

Table 2.   A list of blue and red maritime assets for the PUNIC 21 scenario 

Blue Air   Quantity  Red Air  Quantity 

MRF  138  MRF  144 

MRF‐EW  12  MRF‐EW  10 

FTR  70  FTR  64 

BOMBER  32  BOMBER  32 

Combat Aircraft  252  Combat Aircraft  250 

Tanker  36  Tanker  0 

AEW  12  AEW  10 

HVA (ISR)  8  HVA (ISR)  8 

UAV (ISR)  16  UAV (ISR)  16 

AIRLIFT  24  AIRLIFT  24 

Total Aircraft  348  Total Aircraft  308 

SSM  180 

SRBM  40 

IRBM  24 

Total Missiles  244 
 

Table 3.   A list of blue and red air assets for the PUNIC 21 scenario 
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III. IMPLEMENTING A DESIGN OF EXPERIMENTS IN STORM 

This chapter provides the foundation for successfully implementing a design of 

experiments within STORM. As discussed in Chapter II, STORM is a complex combat 

simulation model that is data-driven rather than “hard-coded.” This allows N81 analysts 

to build campaign scenarios without having to possess an intimate programmers-level 

knowledge of STORM. However, associated with the multifaceted STORM modeling 

environment are thousands of input variables spread across hundreds of input files, a vast 

number of which may be significant in determining model output. Only through a great 

deal of post-processing analysis, which is time and manpower intensive, can correlations 

be identified and insights gained. This severely impacts N81’s ability to accomplish 

quick turnaround tasking, especially if questions arise that pertain to how perturbations in 

force structure, platform types, and capabilities impact a particular campaign.  

The benefits of a well-designed experiment can provide invaluable insights to 

analysts who seek to identify the most significant input variables or how making 

modifications to them could impact a combat scenario. For example, senior military 

decision makers are often interested in looking at utilizing different surface or air assets 

to perform a mission. Likewise, they may want to identify the overall impact of 

decreasing submarine presence in an AOI. These questions are exceptionally difficult to 

answer in a relatively short period of time because STORM does not currently support 

quick-turn analysis due to long simulation run times and the enormous output generated. 

Hindering this further are the vast numbers of input files that are associated with a single 

scenario, such as PUNIC 21. For real-world classified scenarios this number increases 

significantly, placing an even bigger burden on N81 analysts who seek to answer difficult 

questions in a timely manner. Therefore, this chapter explains the terminology associated 

with a design of experiments (DOE), the step-by-step methodology that is required in 

order to implement a design in STORM, and issues that arose during the process of doing 

this proof-of-concept demonstration.  
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A. DOE TERMINOLOGY 

This section covers important terminology associated with a DOE, bearing in 

mind it may be a foreign concept to some. In DOE terms, experimental designs specify 

how to vary a set of input variables in order to identify whether and how they affect a 

particular response or responses (Sanchez, 2007). For example, this could include, but is 

not limited to, changes in overall force composition or enhancing a system’s capabilities. 

1. Types of Variables 

Variables are classified as either quantitative or qualitative. Quantitative variables 

are those that take on a numerical value, such as the maximum speed of a blue force 

destroyer, an aircraft’s minimum engagement range, or the initial force level. Qualitative 

variables are not measured by a numerical value; they are categorical and may have no 

natural sense of ordering, such as different types of undersea warfare offensive weapons 

(e.g., Mark 46 torpedo or Mark 48 torpedo). Experiments may contain both types of 

variables. For this research specifically, quantitative variables (intercept speed profiles) 

were chosen that relate to the blue future naval multi-role fighter (BFNMF). These 

variables were not chosen arbitrarily. Reasons for their selection are discussed later in 

this chapter. The baseline intercept speeds are illustrated in Table 4. Intercept speeds are 

significant in terms of reinforcing friendly aircraft for supporting missions and 

intercepting hostile aircraft and surface vessels that may pose a threat to blue forces in 

general or their high value units (HVU), such as a carrier. Aircrafts with vastly superior 

speed profiles are likely to have substantial advantages in combat.  

 

 

Table 4.   Table of the baseline intercept speeds profile for the BFNMF 
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2. Output Metrics–“What It Takes To Win” Metrics 

Output metric is another term associated with DOE. Given STORM’s inherent 

stochasticity, output metrics of interest are often a particular measureable outcome 

averaged across a set of replications, such as the number of blue forces remaining or the 

number of sorties flown by an aircraft. Key measures that enable blue forces to achieve 

victory are defined by N81 as “what it takes to win” (WITTW) campaign metrics. These 

are interesting outcomes or events that either may or may not take place given certain 

input parameters or that are triggered by a preceding event like red forces entering the 

Mediterranean Sea. Given that PUNIC 21 is a terminating simulation, certain events or 

goals may not take place or be achieved due to some element or other variable that is 

inherently invisible to analysts at first glance. Further exploration by N81 of the output 

data may reveal dependencies or correlations among controllable input factors. However, 

all analysis is constrained by the initial factor settings. For example, a quadratic effect 

can only be estimated if at least three distinct values of an input variable are used in the 

experimentation. Building a DOE and incorporating factors that exhibit interesting 

relationships will reveal a much broader scope of possible cause-and-effect associations.  

3. Designs In General 

The term design matrix refers to a matrix where columns correspond to factors 

and the entries within each column are the settings for that factor. Each row in the matrix 

is a design point that specifies all of the factor settings for that simulation run–where each 

factor setting is varied at the researcher’s discretion. Factor levels are often characterized 

by high and low settings from the baseline. For example, an analyst may want to vary a 

factor by plus and minus 20% of a typical setting. If the baseline is 100 units of some 

measure, the high value would be 120 units, and the low value 80 units. Lastly, the 

response is a metric that is being explored and will likely vary over each design point run. 

A word of caution: High and low settings should be set to provide a somewhat realistic 

interpretation. That is, some settings may go beyond a factor’s physical capability and 

thus DOE results would be worthless in determining true effects on an outcome.  
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4. 2k Factorial Design 

There are many approaches to designing experiments, such as sophisticated nearly 

orthogonal Latin hypercube (NOLH) designs (see Cioppa & Lucas, 2007). For this 

research, which is the first that the authors know of utilizing a DOE on STORM, we use a 

relatively simple 2k factorial design in order to determine the effects of factors on the 

response. A 2k was chosen for its simplicity and also because with it we can measure and 

examine interactions (Law, 2007)–such interactions can be critical in combat. Table 5 

shows a 23 factorial design in matrix format, also known as a design matrix. That is, three 

factors at two levels each, and an associated response (Rj) for each factor setting over 

eight design points. Setting up a matrix facilitates calculations of the factor effects and 

interactions once the design is implemented. A plus indicates that the factor is set at its 

high setting for that run. Likewise, a minus indicates that factor is set at its low setting for 

that design point.  

 

 

Table 5.   Design matrix for a 23 factorial design (from Law, 2007) 

a. Main Effects 

Often examined are the main effects (ej) of each factor—which is the average 

change in response due to moving the factor from low to high levels while holding all 
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other factors fixed (Law, 2007). This is done with all eight design points over all possible 

combinations of the other k–1 factors (for a total of 2k-1 differences). 

b. Interactions 

Interactions describe the case where two or more factors behave synergistically, 

i.e., the effect of one of the factors upon the outcome is altered by the settings of other 

factors. We may be unable to detect interactions or separate them from main effects 

unless the experiment is carefully designed.  Since interactions may or may not be 

present in STORM scenarios, it is imperative to use designs that would permit us to 

identify their presence or absence.  Statistical packages such as R or JMP can perform the 

calculations needed to estimate main effects and interactions as long as the data have 

been created with a suitable design.
 

B. CRITICAL LIMITATIONS IDENTIFIED 

Given STORM’s complexity, there are critical limitations that must be taken 

under consideration before applying a DOE. For smaller models, a design matrix is 

usually generated in a spreadsheet program, such as Microsoft Excel (.xls or .csv format). 

Once the design is complete, it is fed into a simulation model and looped over each factor 

setting, creating a single output file containing data for analysis. Unfortunately, 

STORM’s input files are .dat or data files and using Excel generated designs are not 

possible without first converting them into a data file, which takes time and requires 

analysts with coding experience. The best approach to implement a DOE in STORM is to 

maintain the design in a data file format. Additionally, STORM has 148 input data files 

that represent various categories of data including platform performance, geographic 

locale, operational planning, tactical planning, and inventory (Group W, 2012a). Figure 6 

is a snapshot of STORM Front and all of the input files associated with a study. On the 

left side is the expanded view of the highlighted Naval Asset file along with 147 

additional files relevant to PUNIC 21, such as Naval C2, Naval Unit, and Naval Tactical 

C2. Each file contains the specific information relevant to aspects of the scenario, like an 

asset’s ID (e.g., Anglo Republic Carrier Strike Group Medium-Range Fighter Squadron 
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A) or Asset Type (e.g., Blue Advanced Destroyer). Some asset details are referenced in 

only three input files, but others are referenced in more than a dozen. Most files call on 

others to perform specific tasks throughout a scenario. This dependency adds to the 

difficulty in terms of DOE implementation and severely limits which factors can be 

chosen for a design.  

 

 

Figure 6.  STORM front input data files 

C. IMPLEMENTING A DESIGN WITH STORM: A FOUR-STEP PROCESS  

Taking into consideration the critical limitations discussed above, building and 

successfully implementing a DOE in the complex STORM environment can be done with 

four relatively straightforward steps:  
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1) The analyst should examine scenario-specific output from a baseline 
experiment and identify correlations and patterns among responses of 
interest. Preferably, moderate to high correlation is observed using 
Pearson’s Product-momentum correlation, Spearman’s correlation criteria, 
and/or Kendall’s tau.  As we shall see, the relationships among responses 
help identify input factors to explore. 

2) Given the first step, carefully choose the input factor(s) that likely will 
impact the responses.  The analyst will then build a DOE, in our case a 2k 
factorial design with levels set at their discretion. For this study, the levels 
were set to +/- 10% of the baseline value, but the analyst may increase 
those levels depending on the factors themselves and scenario. As this 
capability expands, more sophisticated designs (see Kleijnen et al., 2005) 
can be used.  

3) The analyst must create separate study folders in the STORM GUI, then 
create custom input files that contain each design point setting and save 
each file in their study directory. Ultimately, this process needs to be 
automated.  

4) Once each study folder (one study folder per design point) contains all 
custom generated files, the analyst may perform replications for each 
design point. With access to a computing cluster, these can be run in 
parallel, dramatically decreasing the clock time required to execute the 
STORM experiments. Please note that analysts must ensure those files are 
run locally—details will be discussed later in this chapter. 

D. CORRELATION AMONG FACTORS 

In order to identify significant relationships among responses, output data from 30 

replications of PUNIC 21 were initially examined and graphically analyzed in R-Studio 

using Pearson’s product-momentum correlation or Pearson’s correlation coefficient 

(PCC). PCC identifies linear associations between two variables by assigning a value 

between -1 and +1. A perfect negative correlation, or a coefficient of -1, indicates a linear 

relationship: if one variable increases, the other decreases by a proportionate amount. 

Conversely, a coefficient of +1 indicates that the two variables are perfectly positively 

correlated, so as one variable increases, the other increases linearly by a proportionate 

amount (Field, Miles, & Field, 2012). These values are found by estimating the 

covariance between two variables and then dividing it by the product of their standard 

deviations, see Equation 3.1.  
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r 

cov xy

sx * sy  (3.1) 

Since there are 2,589 variables associated with the PUNIC 21 output file, 

attempting to identify relationships among all of them is a tedious task–and should be 

automated as much as possible. Therefore, the scope of variables tested in this research 

was significantly narrowed to the WITTW campaign metrics. Figure 7 is a pairs plot of 

nine WITTW metrics that included (from top left to bottom right): losses to blue force 

carriers; advance destroyers; hunter submarines; advanced multi-role fighters; 

amphibious assault ships; boomer submarines; cruisers; destroyers; and future naval 

multi-role fighters. Illustrated on the diagonal in light blue are histograms representing 

the number of losses for each metric at the end of the 20-day terminating simulation for 

30 replications of the PUNIC 21 scenario, which provide insights to the possible 

normality (or other distribution) of the data.  The lower left-half boxes are scatter-plots 

that include a red trend-line to help visually determine what type of relationship exists 

between the two variables. Finally, the upper-right boxes include p-values (p) and PCC 

values (r), which provide numerical information on the relationship indicated by each 

scatter-plot under an assumption of normality. Additionally, output data for 30 

replications were chosen and used as a baseline for significant variable identification. 

Due to the reasons noted in the critical limitations section, only 25 replications were 

allowed per design point. Therefore, it was essential to this research to maintain a similar 

number of replications for the eight design points as the baseline.  
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Figure 7.  RStudio generated pairs plots of nine WITTW campaign metrics 

Figure 7 reveals a strong positively correlated relationship (r = 0.91) between blue 

carrier losses and the number of BFNMF killed. That is, the higher number of BFNMF 

losses, the greater number of carriers blue forces can expect to lose. Moreover, the p-

value is less than 0.001; meaning the probability of getting a coefficient this big if the 

null hypothesis were true is very low. Therefore, there is a high level of confidence that 

this relationship is genuine (Field et al., 2012). Additional relationships are identified 
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with having moderate positive correlations when blue forces lose BFNMF aircraft, such 

as the number of blue advanced hunter submarines (r = 0.13) and blue amphibious assault 

ships (r = 0.38). Figure 8 is a magnified view of the relationship between blue carriers 

and BFNMF killed.  

 

Figure 8.  Pairs plot of blue force carriers killed and BFNMF killed 

Although the data for the number of BFNMF killed appears relatively normal, 

PCC does not require normality. Two additional correlation tests are used in order to 

verify the robustness of the PCC previously generated. Both Spearman’s rho (rs) and 

Kendall’s tau (τ) are non-parametric statistics that can be used to quantify the association 

between two variables (Field et al., 2012). Spearman’s test first ranks each variable in the 

data and then applies Pearson’s equation to each rank. Conversely, Kendall’s test is 

commonly used when the data set is small and contains a large number of ranks of similar 

value. Each test was performed on the blue carriers and BFNMF pair of variables; see 

Table 6.  
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Table 6.   Results for PCC, Spearman’s, and Kendall’s correlation test 

The Spearman’s rho and Kendall’s tau tests in R-Studio do not generate 

confidence intervals. Perhaps by using a bootstrap method this range can be identified. 

However, given the very low p-values for each test, bootstrapping was not necessary. 

Although coefficient results decreased roughly 13% from the PCC test to the Kendall 

test, the relationship between blue carriers and BFNMF killed is still highly statistically 

significant, with the p-values all being less than .0000001.  

E. BUILDING THE DESIGN IN STORM 

Following the identification of significant relationships within the output data set 

with regards to blue carriers, the next step is to build an actual DOE that varies input 

variables. However, two additional tasks must be performed beforehand: First, identify 

the exact number of input files that are associated with the chosen metric; and Second, 

the analyst must decide on what metric aspect to modify. For this research, the BFNMF is 

specifically referenced in one input file, typeaa.dat (type air asset) (see Figure 9). 



 32

 

Figure 9.  Snapshot of the typeaa.dat file in STORM Front 

Identifying the number of input files that reference the BFNMF is essential 

because each file requires modification. Finding significant metrics that are in relatively 

few input files is key to successfully implementing a DOE in STORM. The second task, 

identifying which metric to modify for the design, should only be performed after careful 

considerations and discussions with various experts who have extensive knowledge 

pertaining to that metric. After collaborating with various pilots, it was determined that 

the speed profiles of the BFNMF were believed more vital to accomplishing a mission 

than operating at a higher altitude or making changes to its weapons load-out. Therefore, 

the intercept speed attributes were implemented into a design. Table 7 below is the design 

matrix that was built and implemented with STORM. There are three variables that are 

explored: friendly intercept speed (nautical miles per hour); hostile intercept low speed; 

and hostile intercept high speed. Each variable is assigned two levels, for a total of eight 

design points. Each design point includes a combination of variable levels and a specified 

response (R).  
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Table 7.   Table of the 23 factorial design matrix that modifies the intercept 

speed levels associated with the BFNMF 

The response in Table 7 indicates a focus on blue carriers lost. However, 

responses analyzed in Chapter IV are not limited to this single metric. Additional 

WITTW metrics are included, such as additional naval platforms (e.g., submarines, 

amphibious ships), and studied in order to determine if there are any significant changes 

to the PUNIC 21 scenario output and, more specifically, if intercept speed profiles for the 

BFNMF are in fact significant.  

For this research, each speed profile, or factor level was set to +/- 10% of the base 

value, see Table 4. Modifications of +20% would have pushed the aircraft’s speed past its 

physical capability. Therefore, in an effort to make the change more “real-world,” levels 

were set to the values indicated in Table 7.  

F. CREATION OF INPUT FILES  

After identifying specific factors to explore and building a 2k factorial design, the 

next step is to generate separate input files for each design point. To start, the analyst 

must create separate “design point” study folders in STORM, as seen in Figure 10. These 

folders represent individual study directories that house all relevant input data for the 

PUNIC 21 scenario. Additionally, all output data files associated with each design point 

run will be located in the data warehouse specific to each folder. This allows the analyst 

to examine each design output separately from the others. For further DOE analysis, 

Factor Combination     
(Design Point)

Friendly 
Spd 

(NM/HR)

Hostile    
Low Spd 
(NM/HR)

Hostile 
High Spd 
(NM/HR)

Response           
(Blue Carriers Lost)

1 540 486 486 R1

2 660 486 486 R2

3 540 594 486 R3
4 660 594 486 R4

5 540 486 594 R5

6 660 486 594 R6

7 540 594 594 R7

8 660 594 594 R8
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analysts must currently concatenate output files manually. Further information on how to 

accomplish this step is provided in Chapter IV. Eventually, to be practical, this needs to 

be automated as much as possible.  

 
 

 

Figure 10.  Snapshot of STORM GUI and how it should look after setting up 
eight separate design point study directories  

Once each study folder is set up, the next step is to create custom input files that 

contain all information relevant to the design. For this research, a program written in the 

SCALA programming language is used in order to generate each file. The programming 

code is used to read in a templated version of each input file. Each file template contains 

the location pertaining to each speed profile we are looking to modify. Placeholders are 

then generated that match where the individual factor level settings would be. The design 

matrix from Table 7 is then read in concurrently with the template file, which generates a 

custom typeaa.dat file for all eight design points. This process is then repeated for two 

additional input files that are needed that pertain to command & control (sideC2.dat) and 
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interactions (transaction.dat) files. These files ensure that the custom input file 

appropriately interacts within STORM’s logistical framework when a scenario is run.  

After generating each file, it is placed in its respective study directory. That is, the 

typeaa.dat file for design point one must be placed in the first study directory, along with 

sideC2.dat and transaction.dat files, which is found in the STORM home folder. After 

this occurs the analyst should ensure each of the three files is turned on as a “local” file. 

This step guarantees that when a simulation is run, STORM reads in the custom files and 

not the default files that contain the original input parameters (see Figure 11). If 

successfully made local, the word “Yes” will appear next to that specific input file.  

 

 

Figure 11.  Snapshot of STORM GUI and how to put all three custom files into 
a local setting. In order to get to this option, right click on typeaa.dat, 

sideC2.dat, and transaction.dat files and select “Make Local”  

G. RUNNING A SIMULATION WITH CUSTOM INPUT FILES 

The last step in implementing a DOE in STORM is running each design point 

simulation individually over a number of replications and collecting the output data. 
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Setting the number of replications is at the analyst’s discretion, but they must maintain 

cognizance of the available base memory of their operating system. For this research, 25 

PUNIC 21 replications of each design point were performed through a virtual machine 

(VM) called Oracle VirtualBox. The VM is a Red Hat 64-bit operating environment with 

a Mac OSX (16 GB, 1333 MHz DDR3 Memory) host system. In order to have sufficient 

space, the VM’s base memory was set to 9,046 MB prior to performing a simulation run. 

However, only 25 replications could be performed given certain limitations on the host 

operating system.  

1. STORMMiner Software and Data Collection 

Once each PUNIC 21 scenario is successfully run for each of the eight design 

points, output data files are collected from each study directory for analysis and passed 

through a software program called STORMMiner. This newly developed program is 

designed to parse the output database in order to quickly obtain specific metrics 

(WITTW) that are important to N81. This is accomplished through multiple MySQL 

queries, which identify those metrics and dump them into an Excel file for analysis.  

MySQL is an open source SQL (Structured Query Language) database server. 

MySQL allows a program or user to store, manipulate, and retrieve data in table 

structures. This server was chosen because it was much faster than other open-source 

relational databases at the time when STORM was first developed. Since there are large 

amounts of output data associated with STORM, MySQL’s performance efficiency was 

necessary in order to pull out the WITTW campaign metrics (Group W, 2012b). The data 

tables that are generated from STORMMiner enable N81 to narrow the focus of their 

post-processing analysis efforts, thereby significantly reducing turn-around times, and 

allowing for further exploration of the output data. This thesis is a test platform for 

STORMMiner, which was used extensively in order to analyze the effect of modifying 

each of the three speed profiles. Without its capabilities, this research would not be 

possible. 
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IV. ANALYSIS OF DESIGN POINTS 

This chapter focuses on analyzing the output data of each design point as it 

pertains to four WITTW campaign metrics, which are treated as separate response 

variables. This analysis uses an unclassified data set and is intended primarily to illustrate 

the possibilities and potential of using DOE with STORM.  As discussed in the previous 

chapter, only 25 replications were performed per design point due to host machine 

limitations. This resulted in 200 total runs.  Output data was then directly extracted from 

each study directory, run through STORMMiner, and exported to an Excel file to be 

analyzed. Three software programs were used to conduct analysis on each metric; Excel, 

R, and JMP.  

The following list of responses are analyzed in this chapter:  

 Blue force losses—specifically carrier and BFNMF losses 
 The time at which blue forces achieve air supremacy. 
 The number of the red force’s advance surface-to-air missile (SAM) sites 

destroyed. 

Summary statistics are analyzed for each metric and comparisons are made over 

each design point in order to illustrate the variability in responses due to changing the 

BFNMF intercept speed profiles.  Statistics are then tested using analysis of variance 

(ANOVA) and Tukey’s honest significant difference (HSD) tests in order to determine 

whether there is in fact a statistically significant difference between the design points.  

Further analysis is conducted to determine the significance of each modified speed 

profile—using regression analysis and partition tree models, determine which, if any, 

speed profiles have a significant effect on the response.  The ultimate goal, however, is to 

show how impactful a DOE can be when introduced into STORM and why N81 analysts 

should incorporate these methods for scenario analysis.   
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A. RANDOM NUMBER GENERATION IN STORM 

Prior to analyzing design point output data, it is important to understand the use of 

STORM’s random number generation as it pertains to scenario replication. As discussed 

in Chapter II, an important benefit of STORM is its stochastic nature.  The stochasticity 

produces variability in output data, which provides N81 analysts with a range of 

uncertainty or risk—as is often found in combat situations. This is accomplished through 

a random number seed that determines the specific sequence of random numbers that are 

used within the model. Within the STORM GUI, analysts are able to set their own 

random number seed for a set of replications. If the same random number seeds are 

chosen for multiple sets of replications, then the output data for each set will be identical. 

For example, Table 8 is a set of four separate runs produced in RStudio. The top function, 

rnorm(1), generates one random number from the normal distribution using default 

(randomized) seeding. Over four runs, the number produced changes each time. The runs 

in the lower row use identical seeding, and produce identical values.  

 

 

Table 8.   Table showing random number generation in R-Studio for the 
normal distribution with default and explicit random number seeding 

STORM determines the random number seed for a replication by computing a 

function of replication number (r), error retry number (n), and stream (s)−or f(r,n,s). The 

stream parameter allows the user to change the third argument for a set of replications 

(W, STORM User's Manual Verson 2.3, 2012). In order to identify whether changing the 

BFNMF speed profiles make a difference in scenario output, the same random number 

seed was chosen for each set of replications.  

R-Code Run 1 Run 2 Run 3 Run 4

rnorm(1) 0.1836 -0.8356 1.5953 0.3295

set.seed(1); 
rnorm (1) -0.6264 -0.6264 -0.6264 -0.6264
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B. BLUE FORCE LOSSES–CARRIER 

One of the most important output metrics to examine in this campaign is the 

surface ship force level prior to and at the conclusion of a simulation. In terms of specific, 

theater-level area of responsibility (AOR), the proportion of force degradation provides 

insights to initial force composition and the size required to achieve success. For N81, an 

HVU, such as a carrier, is the most important surface ship metric focused on during post-

process analysis. Figure 12 is a bar-plot of the average carrier losses over each design 

point. Additionally, each light blue colored bar contains a vertical black line that 

represents the 95% confidence interval for that specific set of runs. For comparison, the 

dark-blue horizontal dashed line represents the average number of carrier losses seen in 

the baseline scenario of PUNIC 21 over 30 replications. An examination of the plot 

reveals a moderate amount of variability in the carrier data as we move across each 

design point. Design points one, three, and six are all below the baseline average. 

Visually, design point four has the highest average number of blue carrier losses. Recall 

Table 7 from Chapter III, which indicated design point four as having higher friendly and 

hostile-low intercept speeds, but lower hostile-high intercept speeds. Summary statistics 

for this metric are found in Table 9.  
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Figure 12.  Plot showing the average number of blue carriers with a 95% CI over each design point  
and base simulation mean 
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Table 9.   Table providing the summary statistics for blue force carrier losses for each design point 

Statistic DP 1 DP 2 DP 3 DP 4 DP 5 DP 6 DP 7 DP 8

Mean 0.08 0.16 0.08 0.32 0.2 0.08 0.24 0.24
Standard 
Deviation 0.28 0.37 0.27 0.48 0.41 0.26 0.52 0.44

95% 
Confidence 
Interval [0,0.19] [0.005,0.31] [0,0.19] [0.12,0.52] [0.03,0.37] [0,0.18] [0.02,0.46] [0.06,0.42]

Min 0 0 0 0 0 0 0 0

Max 1 1 1 1 1 1 2 1
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Across all design points, the maximum number of blue carriers killed before the 

PUNIC 21 scenario terminates is at least one-third of their entire carrier force inventory.  

The exception is design point seven, where roughly 67% are destroyed in at least one 

replication. Given that this design point exhibits such a wide confidence interval and the 

largest standard deviation, seeing such a rare event is possible. An additional rare case is 

design point four, where only one carrier was killed in any one set of replications, but that 

event occurred most frequently at 32% of the time.  

Given each design point run was performed using the same random number seed, 

it can be concluded that the variation over each set of replications is either due to 

modifying the BFNMF intercept speeds or, which is more likely the case, by the ordering 

at which certain events occur during the scenario. Although seemingly insignificant in 

terms of changes in average carrier losses across each design point because of the 

minuscule differences among the means, blue forces only possesses three carriers in the 

PUNIC 21 scenario. Therefore, small changes could have a relatively large impact on the 

overall campaign. Furthermore, included in the majority of input files that pertain to blue 

force platform specifics are prioritization criteria for protecting such HVU platforms. 

Since carriers are the pillar for power projection, it has a protection priority class of “1.” 

This means that losing a carrier is a rare event and should not often occur. As such, an 

analyst may want to either further investigate the details surrounding both design points 

four and seven to get a better understanding of why there was such a large proportion of 

carrier losses, or take more replications and compare the output.  

C. BLUE FORCE LOSSES–BFNMF 

Since variables chosen for the DOE pertained specifically to the BFNMF, it 

makes sense to examine the total losses this air platform suffers in the PUNIC 21 

scenario. Figure 13 is a histogram of the first four design points illustrating the frequency 

at which red forces kill the BFNMF during the 20 days of simulated battle.  
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Figure 13.  The number of BFNMN losses over design points one through four 

In each plot, the mean, median, standard deviation, 95% confidence interval, and 

skewness are included under the plot title. Skewness, which is a measure of asymmetry, 

is equal to zero for a symmetric distribution such as the normal (Law, 2007). In Figure 

13, the solid dark blue vertical line indicates the mean, the solid red vertical line 

represents the median, and the dashed dark green lines signify the lower and upper 

confidence interval limits on the mean.  

Compared to blue force carriers, there is much more variability in this output 

because speed changes directly affect the BFNMF and its capabilities. Giving the 

BFNMF a higher speed profile may directly correlate to a lower number of killed 

platforms. The lowest mean from the first four design points is 17.08 (design point one). 

With the exception of design point two, which exhibits a slight right tail distribution, all 

means are relatively close to the median and are distributed somewhat equally on either 

side. Recall from Chapter III that each combination of intercept speeds had a lower 

hostile-high speed profile set to 486 nm/hr and resulted in two design points with means 
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exceeding 20. This is important to an analyst because it clearly identifies a threshold 

speed below which the BFNMF should not drop when intercepting a hostile. If that speed 

should exceed the current physical capability of an assigned airframe, it would be 

beneficial to consider an aircraft that has the ability to intercept enemy forces at higher 

speeds.  

Figure 14 includes the same type of plots, but illustrating design points five 

through eight. Again, there is above average variation in this response, but contrary to the 

first four plots each group of factor settings included higher hostile-high intercept speeds 

set at 594 nm/hr. This resulted in 16.92 BFNMF’s killed (design point six), which was 

the lowest mean out of all eight design points, but also exhibits a wide confidence 

interval. The highest mean, 18.28, was seen in design point five, which also had the 

smallest difference in median and mean.  

Despite only a 12.6% decrease in the average number of BFNMF lost from design 

point four to design point five, its significance should not be overlooked considering it 

could mean the difference between mission failure or success. Moreover, as the number 

of aircraft losses goes up, the blue forces’ ability to gain air supremacy (discussed in the 

following section) goes down. Therefore, insights gained by Figures 13 and 14 provide 

analysts with invaluable knowledge that they would otherwise not have by running a 

scenario with a single set of input metrics.  
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Figure 14.  The number of BFNMN losses over design points five through eight 

D. TIME AT WHICH BLUE FORCES ACHIEVE AIR SUPREMACY 

This section examines whether the blue forces achieve air supremacy and, if so, 

the time at which it occurs. For a senior-level decision maker, this particular WITTW 

campaign metric is of significant interest because many military operations require 

control over the AOR air space. If air control is not obtained, it may severely limit the 

choices combatant commanders have in order to achieve a strategic objective. In the first 

20 days of the PUNIC 21 scenario, blue forces achieved air supremacy ranging from a 

minimum of 64% of the time (design points two, three, and five) to a maximum of 100% 

of the time out of 25 replications (design points seven and eight); see Table 10. Design 

point four had the second largest proportion at 88%. Overall, the average number of times 

air supremacy was achieved is 20.13, which is roughly 81% of the time. The highest 

frequency of supremacy occurred most often towards the simulation’s terminating point. 

Figures 15 and 16 are cumulative plots of the time air supremacy is gained across design 

points one through eight.  



 46

The output data (from STORMMiner) used for the generation of each plot breaks 

each day into quarter segments (e.g., 0.25, 0.50, 0.75) and identifies the specific time 

during PUNIC 21 when air supremacy was achieved by placing a “1” next to that value 

and a “0” next to all other times for when supremacy was not achieved.  For example, in 

the first replication of design point one, air supremacy was gained at day 19.75, but not 

achieved for the second replication.  Therefore, their values would be 1 and 0, 

respectively.  Additionally, it is important to note that once air supremacy is gained in 

PUNCI 21, it is maintained; meaning all follow-on values are “1”, which is represented 

graphically by the light blue bars reaching an apex towards the end of the scenario.  Of 

course, it must be determined whether the difference in design points is simply the result 

of random variation.   

  

 

Figure 15.  The time in which blue forces achieve air supremacy over design 
points one through four 
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Figure 16.  The time in which blue forces achieve air supremacy over design 
points five through eight 

 
Table 10.   Table showing the proportions of the number of replications blue 

forces achieved air supremacy out of 25 replications 

It is critical for an analyst to identify the total time in which it takes to gain 

control over the AOR air space because the longer this objective is left unaccomplished 

the more opportunities red forces have to diminish blue force levels (i.e., kill more ships, 

submarines, and aircraft). Therefore, the ultimate objective is to reduce the overall mean 

number of days to alleviate unnecessary blue force losses.  Figures 15 and 16, along with 

Table 10, provide an excellent representation of how impactful the DOE (i.e., altering the 

BFNMF speed profiles) is, especially design points seven and eight.  Both not only 

exhibit blue forces achieving air supremacy for all 25 replications, but they are doing so 

earlier on in the PUNIC 21 scenario.    

Design 
Point 1

Design 
Point 2

Design 
Point 3

Design 
Point 4

Design 
Point 5

Design 
Point 6

Design 
Point 7

Design 
Point 8

Proportion Of  Blue Air 
Supremacy Over 25 
Replications (%) 0.8 0.64 0.64 0.88 0.64 0.84 1 1
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E. RED FORCE SAM SITES DESTROYED 

As discussed in the previous section, gaining air supremacy is an integral part of 

successful military operations. Directly correlated to this metric, however, is the 

important objective of destroying an enemy’s SAM sites. N81 is particularly interested in 

this metric because it often accounts for a large portion of the aircraft sorties flown in a 

combat situation. A greater number of sites destroyed directly enhances the friendly 

forces’ ability to achieve air supremacy and ultimately lower the inherent risk to blue 

force aircraft.  

Figure 17 is a barplot (similar to Figure 12) of the average number of destroyed 

red force SAM sites over the eight design points. Each red bar contains a vertical black 

line that represents the 95% confidence interval that reveals a narrow window of 

uncertainty for each set of replications. As in the BFNMF losses and blue air supremacy 

case, the benefit of higher intercept speed capability can be seen across all design points. 

This is particularly noticeable in design points six and eight, which account for the 

highest mean number of SAM sites destroyed (29.20), while design point one accounts 

for the lowest (23.08).  
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Figure 17.  Plot showing the average number of red force’s SAM sites destroyed 
with a 95% confidence interval over eight design points and baseline 

simulation mean 

Recall that design points one through four have BFNMF hostile-high intercept 

speeds set to 486 nm/hr and five through eight is set to 594 nm/hr, therefore, the latter 

design points should be exhibiting an overall greater number of average SAM sites 

destroyed. In this particular case, the exception is design point two. Even with lower 

hostile-high intercept speeds, blue forces were still able to take out on average 15.3% 

more sites than design point one. This number could be a false representation of the true 

value, considering only 25 replications were taken, and may reflect the inherent 

variability associated with combat. If more runs of PUNIC 21 were performed, that 

average number may possibly decrease. Either way, this is a specific case analysts may 

want to examine further in order to try and identify additional events that took place 

throughout that specific set of runs which might have caused a higher number of sites to 

be destroyed.  
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Table 11 displays the summary statistics of red force SAM sites destroyed over all 

eight design points. As previously noted in this section, the precisions in the estimated 

means are moderately consistent across all design points.  
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Table 11.   Table providing the summary statistics for red SAM sites destroyed metric

Statistic DP 1 DP 2 DP 3 DP 4 DP 5 DP 6 DP 7 DP 8

Mean 23.08 27.24 25.64 26.24 24.84 29.2 26.24 29.2

Median 24 29 27 28 27 30 27 30
Standard 
Deviation 8.07 6.89 7.13 7.67 7.3 7.14 7.73 7.13

95% 
Confidence [19.92,26.24] [24.54,29.94] [22.85,28.43] [23.24,29.25] [21.99,27.70] [26.41,32] [20.01,29.23] [26.3,31.8]

Min 0 5 0 5 1 0 0 0

Max 35 36 35 36 35 36 35 36

Skewness -1.14 -1.94 -2.34 -1.6 -1.96 -2.78 -1.95 -2.7
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F. STATISTICAL DIFFERENCES IN DESIGN POINTS 

This section focuses on determining whether the design points are statistically 

different from each other in order to validate the resulting variability seen in design 

points for each response examined earlier in this chapter.  For this analysis, ANOVA and 

Tukey’s HSD tests are performed using the following hypotheses: 

H 0 : i  0

Ha :  i  0 for at least one i , i  1, 2,3, 4, 5,6, 7,8  

The null hypothesis (H0) states that the means of all design points (βi) are 

statistically equal to each other, whereas the alternative hypothesis (Ha), states that there 

is at least one design point that is statistically different from the rest.  In hypothesis 

testing, the null hypothesis prevails unless sufficient evidence to the contrary is produced, 

in which case the null hypothesis is rejected in favor of the alternative hypothesis.  If the 

ANOVA results suggest a rejection of the null hypothesis (p-value less than .05), Tukey’s 

HSD test will be performed to analyze where specific differences may lie.    

ANOVA is a statistical test used to analyze whether the means of a several groups 

are equal (i.e., our eight design points).  For this case, a generalized linear regression 

model was fit using each response and all associated design points. The results shown in 

Table 12 indicate retention of the null hypothesis (p-value = .2348) for blue force carrier 

losses and the number of destroyed red force SAM sites (p-value = .058), which is 

highlighted in red.  This means there is no statistical difference in any of the eight design 

points for those specific responses.  Conversely, the results for BFNMF losses and the 

time blue forces achieve air supremacy both qualify for rejection of the null hypothesis 

with p-values of .0301 and less than .001, respectively (highlighted in green).  Since both 

p-values are less than .05, at least one design point is statistically different from the rest.  

In the time to air supremacy case, however, this conclusion could be misleading, as it is a 

result of only accounting for those instances where supremacy was actually achieved. 

Further analysis to validate the ANOVA results for this specific case is performed later in 

this section.  In order to determine where the specific differences lie, Tukey’s HSD test 

results are presented in the form of a plot comparing each combination of design point 
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pairs. See Figures 18, 19, 20, and 21. Additionally, an alternative way of examining each 

pair to evaluate differences is accomplished by grouping each design point utilizing the 

HSD.test() function in R-Studio, which is found in the agricolae package (see Table 12).  

 

 

Table 12.   Table showing the results of ANOVA test for four WITTW 
responses: blue carrier and BFNMF losses, time blue forces achieve 

air supremacy, and the number of red force SAM sites destroyed 

Figures 18, 19, 20, and 21 are graphs of the 95% family-wise confidence levels 

for each response.  Along the y-axis is a comparison of each combination of design 

points, and along the x-axis is the value that corresponds to the differences in mean levels 

of each response as it pertains to each design point combination.  If a pair of design 

points are statistically similar the confidence interval includes zero, which is indicated by 

the red vertical line.  A clear indication that design point pairs are different is when a 

particular confidence interval is either entirely to the left or right side of the red vertical 

line.  For the average number of carrier losses and red SAM sites destroyed cases  

(Figures 18 and 21), Tukey’s HSD test confirms the ANOVA results that there are no 

statistically different pairs of design points.  Contrary to the ANOVA results, however, is 

the average number of BFNMF losses case.  Despite a p-value that is less than .05, 

Response: 
Carrier Losses Degrees of Freedom

Sum of 
Squares F-Value P-Value

Design Point 7 1.435 1.337 0.2348

Residuals 192 29.44
Response:   

BFNMF Losses Degrees of Freedom
Sum of 
Squares F-Value P-Value

Design Point 7 416 2.276 0.0301

Residuals 192 5012.6
Response:    

Air Supremacy Degrees of Freedom
Sum of 
Squares F-Value P-Value

Design Point 7 152.78 5.238 2.24E-05

Residuals 153 637.5
Response:    

Red SAM Sites Degrees of Freedom
Sum of 
Squares F-Value P-Value

Design Point 7 761 1.993 0.058

Residuals 192 10475
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Tukey’s HSD results (Figure 19) show that all confidence intervals include zero.  

Borderline cases include design point pairs six-four and six-two.   

 

Figure 18.  Graph of Tukey’s HSD test results in the form of 95% confidence 
intervals for the average number of blue carrier losses 
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Figure 19.  Graph of Tukey’s HSD test results in the form of 95% confidence 
intervals for the average number of BFNMF losses 
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Figure 20.  Graph of Tukey’s HSD test results in the form of 95% confidence 
intervals for the time it takes blue forces to achieve air supremacy 
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Figure 21.  Graph of Tukey’s HSD test results in the form of 95% confidence 
intervals for the average number of red SAM sites destroyed 
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The only unique case identified is the time it takes blue forces to achieve air 

supremacy.  The ANOVA results concur with the graph generated by Tukey’s HSD test 

(Figure 20).  We can conclude that design point pairs seven-two, seven-three, seven-five, 

eight-one, eight-two, eight-three, eight-four, and eight-five, are statistically different from 

the remaining pairs. Therefore, according to the ANOVA and Tukey’s HSD test, the only 

response that is statistically different in this case is the time it takes blue forces to achieve 

air supremacy—given that air supremacy is achieved. 

Since the BFNMF losses case exhibited a discrepancy between ANOVA and 

Tukey’s HSD test results, further analysis is conducted on all responses by examining the 

HSD.test() results.  This test makes multiple comparisons of design points and provides 

each one with a grouping identification. The results in R-Studio provide summary 

statistics on each metric over each design point, as discussed earlier in this chapter, and 

output that is similar to Table 13.  The results of this test confirm that the time at which 

blue forces achieve air supremacy is the only response that includes statistically different 

design points. The results have grouping identifications “a”, “ab”, “abc”, “bc”, and “c”.  

This means that design points one and four are considered to be a single group (“ab”). 

Design points, six, seven, and eight are all unique design point groups.  For the three 

remaining responses, all design points are considered to be a part of the same group, 

which is denoted by grouping identification “a”.   
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Table 13.   Table of HSD.test() results for each response that include grouping 
identifications, design points, and associated means 

Carrier Losses
Groups Design Point Means

a 4 0.32
a 7 0.24
a 8 0.24
a 5 0.2
a 2 0.16
a 1 0.08
a 3 0.08
a 6 0.08

BFNMF Losses
Groups Design Point Means

a 4 20.84
a 2 20.64
a 5 18.28
a 3 17.76
a 8 17.6
a 7 17.56
a 1 17.08
a 6 16.92

Air Supremacy
Groups Design Point Means

a 2 16.56
a 3 16.09
a 5 16.09
ab 1 15.65
ab 4 15.61
abc 6 15.2
bc 7 14.03
c 8 13.71

Red SAM Sites
Groups Design Point Means

a 4 29.2
a 7 29.2
a 8 27.24
a 5 26.24
a 2 26.24
a 1 25.64
a 3 24.84
a 6 23.08
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Although both tests indicate that there are statistical differences among design 

points for the time blue forces achieve air supremacy response, it is important to note that 

these results could be misleading, as mentioned earlier.  Since only those replications 

where air supremacy was actually gained were used in the regression model, the results 

from the ANOVA and Tukey’s HSD tests could be providing a false representation that 

design points are in fact unique—especially given that design points one through eight 

varied in the number of times blue forces achieved air supremacy out of 25 replications 

(see Table 10).  For this reason, Pearson’s chi-squared statistic test is generated in R-

Studio to test if there is a difference in the proportions in which air supremacy is achieved 

within 20 days across the eight design points.  The hypothesis test used in this case is:  

H 0 : Design Points are independent from the probability 

       of achieving air supremacy    

Ha : Design Points are not independent  

In preparation for the test, a matrix is generated that contains the number of times 

the blue force achieves or does not achieve air supremacy in the 25 replications for each 

design point (see Table 14).  The data are then compared using Pearson’s chi-squared 

statistical test.  

 

Table 14.   Matrix generated in R-Studio of the number of times the blue force 
achieves and does not achieve air supremacy over the 25 replications 

for design points one through eight 

Since Figure 22 reveals a p-value that is significantly lower than .05, we reject the 

null hypothesis that states the design points are independent from the probability of 

achieving air supremacy.  Therefore, we can ultimately conclude that the results show a 

statistical difference in design points as it pertains to this response.  We conclude that 

BFNMF intercept speeds impact when air supremacy is achieved, and that faster intercept 

speeds are better—as one would expect.   

Design 
Point 1

Design 
Point 2

Design 
Point 3

Design 
Point 4

Design 
Point 5

Design 
Point 6

Design 
Point 7

Design 
Point 8

Observed Time (in Days) 
to Air Supremacy

20 16 16 22 16 21 25 25

Difference From 25 
Replications 

5 9 9 3 9 4 0 0
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Figure 22.  Results from Pearson’s chi-squared statistic test on whether or not 
the blue forces achieve air supremacy before the simulation terminates   

Although there are no significant statistical differences among design points as it 

pertains to blue carrier and BFNMF losses or red force SAM sites destroyed, this does 

not indicate that the implemented DOE was not successful. It emphasizes the point that 

small changes in a couple of factor levels (i.e., +/- 10%) may not have been sufficient to 

affect the specific campaign measures used for the PUNIC 21 scenario.  If we varied 

more factors, or used wider ranges, we would have the potential to see greater impacts. 

G. BFNMF SPEED PROFILE SENSITIVITY ANALYSIS 

This section focuses on examining the output data over each design point as it 

pertains explicitly to each factor setting (i.e., changes in speed profiles of the BFNMF). 

Specifically, we seek to identify main effects and any interactions between factors by 

performing regression analysis to determine factor effects on a specified response. This 

process is known as factor screening or sensitivity analysis (Law, 2007). Data 

manipulation and preparation is key to the analysis performed in this section and must be 

completed initially on each design point data set. First, data files for design points one 

through eight are opened individually in R-Studio. Since each file contains significantly 

more variables than just the WITTW campaign metrics, each data set is narrowed by 

extracting 19 variables and placing them into a separate data frame. Once completed for 

all design points, the results are saved as an Excel document and imported into JMP. 

Once in JMP, its custom design application (under heading DOE) is used to incorporate 

the design matrix as it corresponded to each set of simulation runs (25 replications) and 
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the associated response output. The final step is to concatenate all eight design point files 

into a single data frame that can be utilized for study. Figure 23 is a snapshot of the 

generated data frame necessary to conduct analysis on each intercept speed variable.  

 

Figure 23.  Snapshot of JMP data file that includes BFNMF factor settings and 
output data associated with all eight design point 

Once the concatenated file is set up correctly in JMP, as indicated by Figure 23, 

full-factorial linear regression models were estimated with each BFNMF intercept speed 

factor (friendly, hostile-low, and hostile-high) as it pertains to each of the four responses 

discussed throughout this section.  A condensed version of the model results is shown in 

Figure 24 for all responses, which provides R-Squared (R2), ANOVA, individual factor, 

and interaction p-values.  Values other than R2 are identified as either being significant 

(highlighted in green) or insignificant (highlighted in red).  The first model uses blue 

carrier losses as the response and reveals that each factor exhibits neither individual 

significance nor two- or three-way interactions. The results are similar for the time it 

takes blue forces to achieve air supremacy and red force SAM sites destroyed, where 

only a three-way interaction and friendly intercept speed, respectively, are found to be 

significant.  As previously noted, the values pertaining to the air supremacy response may 

be misleading because only those instances where supremacy was actually achieved are 

accounted for. However, in the model for BFNMF losses we find that friendly and 

hostile-high intercepts speeds, along with their two-way interaction, are statistically 

significant—additionally indicated by the ANOVA results (p-value = .03).   
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Table 15.   Summary p-value and R2 results for the JMP generated full 
factorial linear regression models 

The partition tree method gives an additional way of examining and visualizing 

these results.  JMP provides an interactive tool for partitioning which factor groupings 

affect each response metric.  Each partition that is made improves coverage of the data 

and reveals the factor levels that correspond to a specific response value. For more 

complicated designs, the partition tree method provides a unique way for an analyst to 

examine output data and is extremely easy to follow.  Figure 24 is an example of the 

partition tree method used for the number of BFNMF losses response. According to the 

partition tree, the lowest number of losses occur when hostile-high and friendly intercept 

speeds are greater than or equal to 594 nm/hr and 660 nm/hr respectively, and hostile-low 

intercept speeds are strictly less than 594 nm/hr.  These specific factor settings result in a 

mean loss of only 16.92 BFNMF’s (highlighted in red).  

Source
Blue Carrier 

Losses
BFNMF      
Losses

Time To Blue 
Air Supremacy

Red SAM Sites 
Dead

R-Square 0.00825 0.0766 0.0564 0.0412

ANOVA p-value 0.9782 0.03 0.126 0.3176

Friendly Intercept Speed     
(p-value)

0.8207 0.0044 0.3038 0.0444

Hostile-Low Intercept Speed   
(p-value)

0.8207 0.0672 0.1179 1

Hostile-High Intercept Speed   
(p-value)

0.4968 0.0406 0.3064 0.1516

Friendly Intercept Speed     
*                

Hostile-Low Intercept Speed   
(Interaction p-value)

0.8207 0.7506 0.4711 1

Friendly Intercept Speed     
*                

Hostile-High Intercept Speed  
(Interaction p-value)

0.4968 0.0065 0.8597 0.1516

Hostile-Low Intercept Speed   
*                

Hostile-High Intercept Speed 
(Interaction p-value)

0.8207 0.7506 0.2934 1

Friendly Intercept Speed     
*                

Hostile-Low Intercept Speed   
*                

Hostile-High Intercept Speed  
(Interaction p-value) 

0.4968 0.5162 0.0231 1
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Figure 24.  Partition tree method in JMP for the number of BFNMF losses.  The left-most branch corresponds to the lowest 
number of losses (highlighted in red) 
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V. CONCLUSION AND RECOMMENDATIONS  

This research is a first step in a long journey that will ultimately enhance the 

overall analysis capabilities of STORM and provide N81 analysts with the capability to 

enhance their level of knowledge and an ability to provide leadership with quick 

turnaround analysis.  Although the results from Chapter IV indicate that the BFNMF 

factors are only moderately significant for BFNMF losses in this proof-of-concept 

analysis, it can be concluded that a small design of experiments, like the one generated in 

Chapter III, can be implemented into STORM if the four-step methodology is followed 

and limitations are carefully considered.  In addition, it is important for the user to have a 

broad understanding of STORM, as discussed in Chapter II, before an experiment is 

attempted—it is an extremely complicated simulation environment.  As a pilot study, this 

thesis provides the foundation for future researchers to further explore either automating 

the approach, or applying it to a real-world classified scenario.   

A. DOE DESIGN AND METHODOLOGY  

Chapter III discusses the methodology behind choosing significant factors from a 

baseline output data set, incorporating those factors into a 2k factorial design, and 

implementing that design into STORM.  Initially, it is important for the user to become 

familiar with STORM, its GUI, where to locate input and output data files, and the 

various tools that can be utilized for analysis.  Additionally, understanding and adhering 

to the critical limitations section is extremely important for successful DOE 

implementation.  Choosing a specific factor that is referenced multiple times throughout 

STORM’s input data files requires significant coding efforts.  Unfortunately, this 

currently limits the overall effectiveness of this process. However, significant insights 

can potentially be gained even from small designs, as seen from the analysis in Chapter 

IV.     

B. BENEFITS OF EXPERIMENTAL DESIGN IN STORM 

The main purpose of Chapter IV was to analyze output data as it pertained to four 

WITTW metrics in order to demonstrate that N81 analysts can gain significant insights 
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from a successfully implemented design. Summary statistics, histograms, and barplots 

were utilized to gain intuition about how changing the intercept speed profiles for the 

BFNMF was affecting the PUNIC 21 scenario outcomes.  Since variations were exhibited 

throughout all metrics and all design points, ANOVA and Tukey’s HSD tests were run in 

order to validate whether this variation resulted in statistically different design points.  It 

is important for an analyst to analytically confirm the variation in separate responses.  

Indeed, statistical tests may reveal that differences that appear to be significant via plots 

or summary data may in fact be the result of random variation.  For this thesis, the results 

revealed that only one response, the time it takes blue forces to achieve air supremacy has 

statistical significance across different design points.  Moreover, it can be concluded that 

this difference resulted from making a slight change of only 10% to a very small number 

of factors in a hypothetical scenario.  If the methodologies discussed in this thesis are 

applied to a real-world scenario, the results could prove to be even more informative.   

The ultimate goal for this research was to test the feasibility of implementing a 

DOE within STORM, knowing that how each factor affects the response in the PUNIC 

21 scenario, or any scenario for that matter, will provide valuable insights to N81 

analysts.  Armed with the specific tools used in Chapter IV, they will be able to 

significantly improve their overall ability to analyze scenarios and provide decision 

makers with options that are backed by statistical evidence.    

C. RECOMMENDATIONS  

Although the benefits of a DOE within STORM are seen throughout this research, 

the methodology discussed in Chapter IV is far from being an automated process.  When 

implemented manually it requires a significant amount of time and effort, which is not 

conducive for current N81 operations.  Additionally, a moderate level of coding 

experience is required in order to create custom input files for design implementation.  

Therefore, follow-on research should explore additional methods such as automating 

these procedures to extend the reach of the work presented in this thesis.  The ultimate 

goal is to incorporate a DOE in a real-world scenario so N81 can gain significant insights 

similar to what was presented in this research. 
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APPENDIX.  R-STUDIO CODE 

This Appendix contains the R code that was used to conduct the statistical 

analysis on each design point, as discussed in Chapter IV.  Upon reading in the desired 

scenario output data file (retrieved using STORMMiner software), the code generates 

summary statistics, histograms, barplots, and statistical-difference tests (ANOVA and 

Tukey’s HSD) of each user-specified metric.   

 

##Calculates the summary statistic, bar-plots, and histograms for each design point 
##LT William Bickel 
##September 2014 
 
#Reads in specific file that is to be examined 
Output_File<-read.csv(file.choose())  
 
#Creates a data frame with only the metric of interest.  Must be performed for design 
#points one through eight 
n<-nrow(Output_File$value) 
average<-mean(Output_File$value) 
std_dev<-sd(Output_File$value) 
error<-qnorm(0.975)*(std_dev)/sqrt(n) 
lower<-average-error 
upper<-average+error 
 
#Install R Package e1071 for skewness of data 
skew<-skewness(Output_File$value) 
 
#brings all eight design point summary statistics together 
metric_file_avg<-rbind(average1, average2, …, average8) 
metric_file_lower<-rbind(lower1, lower2, …, lower8) 
metric_file_upper<-rbind(upper1, upper2, …, upper8) 
 
 
##Building the bar-plot for examining averages over each design point 
plot<-barplot(metric_file_avg, col="light blue",ylab="Y-axis label", main="Main Title") 
errbar(plot[,1], metric_file_avg, metric_file_upper, metric_file_lower, add=T, xlab="") 
legend(locator(1),lty=1,lwd=c(2,3),col= 'black', legend=c("95% Confidence Interval")) 
 
## Building a 2 by 4 histogram with mean, median, and 95% Confidence Intervals 
par(mfrow=c(2,4) 
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hist(Output_File$value,breaks=20,col="lightblue",main=paste("MainTitle”, 
Mean=",signif(average,digits=4),",Median=",signif(median(Output_File$value),digits=4)
,",SD=",signif(sd4,digits=4),",95%CI= 
[",signif(metric_file_lower,digits=4),",",signif(metric_file_upper,digits=4),"],\nSkewness
=",signif(skewness(Output_File$value),digits=4)),xlab="X-axis label") 
abline(v=average,col="blue",lwd=4) 
abline(v= metric_file_lower,col="dark green",lty=2,lwd=4) 
abline(v= metric_file_upper,col="dark green",lty=2,lwd=4) 
abline(v=median(Output_File$value),col="red",lwd=4) 
 
##Creating ANOVA table, Tukey’s HSD test results and graph 
 
#Create a linear regression model over each design point 
File_lm<-lm(Output_File$(“WITTWMetric”)~Output_File$Design.Point, 
data=Output_File) 
summary(File_lm) 
anova(File_lm) 
Output<-aov(Output_File$(“WITTWMetric”)~Output_File$Design.Point, 
data=Output_File) 
posthoc<-TukeyHSD(x=Output,'Design.Point',cof.level=.95) 
plot(posthoc) 
HSD.test(File_lm,'Design.Point',console=TRUE) 
Output.hsd <-data.frame(TukeyHSD(Output, which = "Design.Point")$Design.Point) 
Output.hsd$Comparison_of_Pairs_of_Design_Points<-row.names(Output.hsd) 
ggplot(Output.hsd, aes(Comparison_of_Pairs_of_Design_Points, y = diff, ymin = lwr, 
ymax = upr))+geom_pointrange() + ylab("Difference in Mean Levels of Design 
Points")+coord_flip()+ggtitle("MainTitle")+theme(plot.title = element_text(lineheight=2, 
face="bold"))+geom_hline(yintercept=c(0,0),color="red")+theme(axis.text= 
element_text(size=20),axis.title=element_text(size=16,face="bold")
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